
Delphi Internals: CPU Type
Component-based CPU Type determination
by Dave Jewell

A few weeks ago, I was given the
task of writing a readership

survey program for a popular UK
magazine. Not unnaturally, I
decided to write the program in
Delphi! Much of the required infor-
mation was provided by getting the
user to answer a series of ques-
tions, but it was also important to
automatically gather some infor-
mation on the hardware which the
user was running. One item that
was of interest to the publishers
was the CPU type.

Initially, I planned to use the
GetWinFlags API routine to deter-
mine what sort of processor was in
use. However, I discovered that
this routine doesn’t even recognise
Pentium processors let alone the
Pentium Pro (P6) chip. It seemed to
me that this wasn’t adequate for
the job so I decided to look further
afield. Somewhat later, I discov-
ered a call you could make on the
built-in Windows DPMI server
which will return the CPU type.
This call is accessed by a INT $31
call. Again, this looked promising,
but as before there was no informa-
tion on how to recognise Pentium
or Pentium Pro chips.

In desperation I started trawling
the bulletin boards and eventually
found what I was looking for in the
Delphi forum on CompuServe. I
discovered some code (kindly
donated by Intel) which reliably
checks for all existing processor
types – oh joy!

Introducing The
TCPUName Component
As it stood, the code in question
was rather untidy and mainly
comprised a single large in-line
assembler routine. I spent some
time tidying this up and decided to
re-package it as a component. One
might as well do things properly!
The screenshot above shows how
the component looks from the
viewpoint of the Object Inspector.

The component has two special
properties in addition to the Name
and Tag fields. Both of these prop-
erties are read-only. If you try edit-
ing them in the Object Inspector,
they’ll immediately snap back
to whatever values they had
beforehand. More on that shortly!

The first property, CPUKind, is a
simple integer value which returns
the type of CPU we’re dealing with.
This number will generally take
one of the following values:

const
  i8086       = 1; {also 8088}
  i80286      = 2;
  i80386      = 3;
  i80486      = 4;
  iPentium    = 5;
  iPentiumPro = 6;

Although the constants defined
here only go up as far as the
Pentium Pro, you can reliably
expect that what comes after will
return a value of 7, provided that
Intel continue to consistently
implement the CPUID instruction
which is used by the TCPUName code.
CPUID, in case you haven’t encoun-
tered it before, is a special instruc-
tion which returns the type of
processor being used along with
other assorted information.
Unfortunately Intel didn’t think of
implementing the CPUID instruction
until they got as far as the 80486

processor (amazing how obvious
things seem given the benefit of
hindsight!) which is why the code
in Listing 1 is a good deal more
complex than it would otherwise
have to be.

The second property, CPUName,
returns a plain-English description
of the processor. This is for use by
those applications (like my reader
survey program) which simply
wish to report the CPU type with-
out necessarily doing anything else
with it. The possible values which
this string can take are:

’8086’
’80286’
’80386’
’80486’
’Pentium’
’Pentium Pro’
’Px’

The last item here is intended for
upward compatibility with future
processors. Although we can’t
predict Intel’s marketing names for
each processor, the ’Px’ designa-
tion should be consistent. I’ve
already got my order in for a quad,
2 GHz P10 motherboard...

How It Works
Listing 1 shows the component in
its entirety. Two private member
functions are implemented within
the class definition, GetCPUKind and

➤ Our TCPUName
component in
action! The
corresponding
Object Inspector
window is also
shown

January 1996 The Delphi Magazine 41



GetCPUName. These methods are
used to return the processor type
and processor name respectively
for the implementation of the two
properties described above. It’s
likely that you’ll only ever have one
instance of the TCPUName compo-
nent in any one application, but for
the sake of simplicity, and to avoid
re-interrogating the CPU where

multiple instances might be
present, I decided to store the CPU
identifier using a single integer
global variable. This is set up in the
unit initialisation code.

You’ll also notice that there are
two dummy routines, NOPInteger
and NOPString. These are used to
provide dummy write methods for
the two component properties.
The recommended way of creating
read-only properties (according to

the Delphi on-line help) is to
declare properties without an
associated write clause, like this:

published
  { Published declarations }
  property CPUKind: Integer
   read GetCPUKind; {read-only!}
  property CPUName: String
   read GetCPUName; {read-only!}
end;

unit CPUKind;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs;
type
  TCPUName = class(TComponent)
    private
      { Private declarations }
      function GetCPUKind: Integer;
      function GetCPUName: String;
      procedure NOPInteger (val: Integer);
      procedure NOPString (val: String);
    protected   { Protected declarations }
    public      { Public declarations }
    published
      { Published declarations }
      property CPUKind: Integer read GetCPUKind
        write NOPInteger; { read-only! }
      property CPUName: String read GetCPUName
        write NOPString;   { read-only! }
  end;
procedure Register;
implementation
const
  i8086       = 1;           { includes 8088 CPU as well }
  i80286      = 2;
  i80386      = 3;
  i80486      = 4;
  iPentium    = 5;           { P5 - Pentium }    
  iPentiumPro = 6;           { P6 - Pentium Pro }
var
  id: Integer;
function CpuID: Integer; assembler;
{ Assembly function to get CPU type incl Pentium and later }
asm
  push        ds             { first, check for 8086 -
                               Flag bits 12-15 always set }
  call        GetWinFlags    { call Windows API }
  or          ax,wf_CPU286   { or with 80286 processor bit }
  mov         ax,i80286      { assume 286 }
  jz          @@1            { branch if it was }
  { Not a 80286 - let’s check for a 8088/8086 next }
  pushf                      { save EFLAGS }
  pop         bx             { store EFLAGS in BX }
  mov         ax,0fffh       { clear bits 12-15 }
  and         ax,bx          { in EFLAGS }
  push        ax          { store new EFLAGS value on stack }
  popf                       { replace current EFLAGS value}
  pushf                      { set new EFLAGS }
  pop         ax             { store new EFLAGS in AX }
  and         ax,0f000h  { if bits 12-15 are set, then 8086 }
  cmp         ax,0f000h      { is an 8086/8088 ? }
  mov         ax,i8086       { turn on 8086/8088 flag }
  je          @@1            { yes - all done }
  { To test for 386 or better, we need to use 32 bit
    instructions, but the 16-bit Delphi assembler does not
    recognize the 32 bit opcodes or operands.  Instead, use
    the 66H operand size prefix to change each instruction to
    its 32-bit equivalent. For 32-bit immediate operands, we
    also need to store the high word of the operand 
    immediately following the instruction. The 32-bit
    instruction is shown in a comment after the 66H
    instruction. }
  db         66h             { pushfd }
  pushf
  db         66h             { pop eax }
  pop        ax              { get original EFLAGS }
  db         66h             { mov ecx, eax }
  mov        cx,ax           { save original EFLAGS }
  db         66h             { xor eax,40000h }
  xor        ax,0h           { flip AC bit in EFLAGS }
  dw         0004h
  db         66h             { push eax }
  push       ax              { save for EFLAGS }
  db         66h             { popfd }
  popf                       { copy to EFLAGS }
  db         66h             { pushfd }
  pushf                      { push EFLAGS }

  db         66h             { pop eax }
  pop        ax              { get new EFLAGS value }
  db         66h             { xor eax,ecx }
  xor        ax,cx      { can’t toggle AC bit, CPU=Intel386 }
  mov        ax,i80386       { turn on 386 flag }
  je         @@1
  { i486 DX CPU / i487 SX MCP and i486 SX CPU checking 
    Checking for ability to set/clear ID flag (Bit 21) in
    EFLAGS which indicates the presence of a processor with
    the ability to use the CPUID instruction }
  db         66h             { pushfd }
  pushf                      { push original EFLAGS }
  db         66h             { pop eax }
  pop        ax              { get original EFLAGS in eax }
  db         66h             { mov ecx, eax }

  mov        cx,ax           { save original EFLAGS in ecx }
  db         66h             { xor eax,200000h }
  xor        ax,0h           { flip ID bit in EFLAGS }
  dw         0020h
  db         66h             { push eax }
  push       ax              { save for EFLAGS }
  db         66h             { popfd }
  popf                       { copy to EFLAGS }
  db         66h             { pushfd }
  pushf                      { push EFLAGS }
  db         66h             { pop eax }
  pop        ax              { get new EFLAGS value }
  db         66h             { xor eax, ecx }
  xor        ax, cx
  mov        ax,i80486       { turn on i486 flag }
  je         @@1             
  { if ID bit cannot be changed, CPU=486 without CPUID
    instruction functionality }
  { Execute CPUID instruction to determine vendor, family, 
    model and stepping.  The CPUID instruction used in this
    program can be used for B0 and later steppings of P5 }
  db         66h             { mov eax, 1 }
  mov        ax, 1           { set up for CPUID instruction }
  dw         0
  db         66h             { cpuid }
  db         0Fh   { Hardcoded opcode for CPUID instruction }
  db         0a2h
  db         66h             { and eax, 0F00H }
  and        ax, 0F00H       { mask everything but family }
  dw         0
  db         66h             { shr eax, 8 }
  shr        ax, 8    { shift the cpu type down to low byte }
@1:
  pop        ds
end;
procedure TCPUName.NOPInteger(val: Integer); begin end;
procedure TCPUName.NOPString(val: String); begin end;
function TCPUName.GetCPUKind: Integer;
begin
  Result := id;
end;
function TCPUName.GetCPUName: String;
begin
  case id of
    i8086:       Result := ’8086’;
    i80286:      Result := ’80286’;
    i80386:      Result := ’80386’;
    i80486:      Result := ’80486’;
    iPentium:    Result := ’Pentium’;
    iPentiumPro: Result := ’Pentium Pro’;
  else
    Result := Format (’P%d’, [id]);
  end;
end;
procedure Register;
begin
  RegisterComponents (’Pilgrim’’s Progress’, [TCPUName]);
end;
begin
  id := CpuID;        { unit initialisation }
end.

➤ Listing 1

42 The Delphi Magazine Issue 5



Unfortunately, if you try this, you’ll
find that not only are the proper-
ties read-only, but they are also
invisible to the Object Inspector. I
found this rather irritating as I
wanted to see the properties in the
Object Inspector window. In order
to get the read-only properties to
appear, it was necessary to fool
Delphi into thinking that the prop-
erties were writeable, hence the
need for the dummy write meth-
ods. I think this is a shortcoming.
After all, it’s called an Object
Inspector, so you would imagine
that it ought to be able to inspect
read-only properties without any
implication that the properties in
question are writeable! Ho-hum...

The most important routine in
Listing 1 is the CpuID function. This
first calls the GetWinFlags API func-
tion in order to determine if a 286
is in use. Although the original Intel
source included 286 detection
code, this was commented out and
I got the impression it caused GPF
problems under Windows.

The program then tries to see if
it’s dealing with an 8088/8086 by
checking to see if certain bits are
‘stuck’ in the EFLAGS register. If
you’re paying attention, you’ll
know that there’s a zero percent
chance of detecting a 8088/8086
processor while running a Delphi
program since these processors
aren’t even capable of entering
protected mode, let alone running
Windows! Nevertheless, I’ve left
the code in so that you can adapt it
for use in a DOS application if you
wish. The same argument applies
to 286 detection. Most modern soft-
ware, including Windows 95 itself,
requires a minimum of a 386 proc-
essor, but again, I’ve left the code
in for the sake of completeness.

From then onwards, the code
uses 32-bit instructions to test for
386 (and higher) processors. Un-
fortunately, the in-line assembler
built into 16-bit Delphi won’t recog-
nise anything higher than 286 in-
structions, so we have to manually
prefix each 32-bit instruction with
the value $66. This looks rather un-
tidy, but the result is the same.
Each $66 op-code tells the proces-
sor to treat the next instruction as
being 32-bit rather than 16. Thus,

the op-code $50, which is inter-
preted as PUSH AX, will normally
only push the contents of the 16-bit
AX register onto the stack. How-
ever, if we precede the $50 op-code
with $66, then it becomes a PUSH EAX
instruction, pushing the entire
contents of the 32-bit EAX register.

Incidentally, 32-bit Delphi will be
able to assemble 32-bit instruc-
tions directly, so if you want to port
this code over you’ll be able to
significantly tidy it up and get rid of
the 8088/8086 and 286 checks at
the same time!

By the time the code has got to
this point, we know that it’s a 486
processor (or better). However,
not all 486 processors implement
the CPUID instruction which returns
the processor family and other
information. Accordingly, the code
has to perform another check,
testing bit 21 in the EFLAGS register
to see if CPUID functionality is
present. If it isn’t, we know it’s just
a low-end 486 chip. Otherwise the
code executes a CPUID instruction
and returns the family identifier
directly as the function result.

The CPUID Instruction
If you wanted to, you could easily
obtain more detailed information
from the call to CPUID. If you look at
Table 3 on page 4 of the Intel PDF
file on the disk (see ‘What’s On The
Disk’), you’ll see a description of
the format of the EAX register imme-
diately after CPUID has been exe-
cuted. This gives you the minor
stepping number, major stepping
number, family information (which
is what is picked up by the TCPUName
component) and model number.
Using this information, you could
easily add a model number and/or
string to the TCPUName property list,
and the same for the stepping infor-
mation. This is left as an exercise
for the reader, but it’s clearly very
straightforward.

Getting the model and stepping
information might be advanta-
geous in a hardware diagnostic
program, but bear in mind that if
you’re seeking to detect the notori-
ous Pentium division bug you
won’t get very far because Intel
didn’t change the processor step-
ping numbers when they fixed the

divide instruction. Instead, you
actually have to perform some
division and see if it checks out OK.

After the CPUID instruction has
executed, the EDX register contains
a list of ‘feature flags’ for the proc-
essor. The format of these flags is
given in the Intel PDF file, although
I think the information here is a bit
too esoteric to be of much general
use. I can’t help wondering,
though, if the undocumented fea-
ture flags perhaps provide an easy
way to detect the fixed division
problem, amongst other things.

What’s On The Disk
The disk with this issue contains
the component files as well as the
Intel documentation on the CPUID
instruction, in Adobe Acrobat
format as CPUAP.PDF (the Acrobat
reader is on your Delphi CD).

Dave Jewell is a freelance techni-
cal journalist, computer consult-
ant and author of Instant Delphi
from Wrox Press. This article is
based on part of his forthcoming
book on Delphi component writ-
ing, which will be published in the
first half of 1996. You can reach
Dave by email on the internet as
djewell@cix.compulink.co.uk or
on CompuServe as 102354,1572

January 1996 The Delphi Magazine 43


	Introducing the TCPUName Component
	How it works
	The CPUID Instruction
	What's On the Disk

